Meet Inspiring Speakers and Experts at our 3000+ Global Events with over 1000+ Conferences, 1000+ Symposiums and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World’s leading Event Organizer

Conference Series Conferences gaining more Readers and Visitors

Conference Series Web Metrics at a Glance

  • 3000+ Global Events
  • 100 Million+ Visitors
  • 75000+ Unique visitors per conference
  • 100000+ Page views for every individual conference

Unique Opportunity! Online visibility to the Speakers and Experts

Renowned Speakers

Mark Bronstrup

Mark Bronstrup

Helmholtz Centre for Infection Research Germany

Emmanuel Mic. Drakakis

Emmanuel Mic. Drakakis

Imperial College London UK

Lidia Gardner

Lidia Gardner

The University of Tennessee Health Science Center USA

Krishna Dronam Raju

Krishna Dronam Raju

Foundation for Genetic Research USA

Wenju Wang

Wenju Wang

Yan’an Hospital of Kunming City, China

Maria-João R. P. Queiroz

Maria-João R. P. Queiroz

University of Minho Portugal

Patricia E Berg

Patricia E Berg

George Washington University Medical Center USA

Helena Barreto Henriksson

Helena Barreto Henriksson

Sahlgrenska University Hospital, Sweden

Recommended Global Biotechnology Webinars & Conferences

Europe & UK

Asia Pacific & Middle East

Canada

Biotechnology-2023

About Conference


BioTechnology-2023 invites the participants from all over the world to attend “40th International conference on Advanced Biotechnology” during July 26-27, 2023 Manitoba, Canada. Which includes prompt keynote presentations, Oral talks, Poster presentations and Exhibitions. The Theme of this conference is "Emphasizing Latest Innovations and Excellence in the Field Advanced Biotechnology”

Innovative Technologies Are A Main Focus In Bio Technology. The Keynote Speakers And Inspiring Introductions At This Conference Will Offer A Global Forum For Discussion Of Current And Upcoming Challenges In 40th International conference on Advanced Biotechnology.

Who Should Attend?

A great opportunity to network with your peers from academia and industry:

All the Stake Holders (both Academia & Industry) of the Sector.

Researchers & Innovators.

Experts Looking for Collaborative Work.

Product Developers.

Solution Providers.

Sales & Marketing Professionals.

Associations, Societies, & Professional Bodies.

Funding Agencies & Fund Raisers.

Management Bodies.

Decision Makers.

Why to Attend?

Be the first to showcase your research, innovation and brand to gain competitive advantages. Meet your target audience and explore your product and services.

To Meet Experts

Learning In a New Space

New Tips & Tactics

Sessions & Tracks

1. Biopharmaceuticals

The production of biopharmaceuticals involves the use of advanced technologies such as genetic engineering, fermentation, and purification. These drugs require strict regulatory oversight and validation due to the potential for immunogenicity and the complexity of their manufacturing process.

Biopharmaceuticals have several advantages over traditional chemical-based drugs, including better efficacy and fewer side effects. They also have the potential for personalized medicine, where drugs can be tailored to an individual's specific genetic makeup.

2. Covid-19 Drug Development

Covid-19 drug development involves repurposing existing drugs, developing new small molecule drugs, and producing biologic therapies such as monoclonal antibodies. Several drugs have been authorized for emergency use, including remdesivir, dexamethasone, and monoclonal antibody therapies. Vaccines have also been developed and are being administered worldwide to prevent Covid-19 infections. The industry continues to research and develop new treatments to combat the virus.

3. Nanoparticles in Biopharmaceuticals

In biopharmaceuticals, nanoparticles can be used to encapsulate drugs or biologics, protecting them from degradation and improving their stability. They can also be used to modify the pharmacokinetics of a drug, allowing for sustained release and longer-lasting effects.

Nanoparticles can be made from a variety of materials, including lipids, polymers, and metals. They can be engineered to have specific properties, such as biodegradability, biocompatibility, and targeting ability.

Overall, the use of nanoparticles in biopharmaceuticals is a rapidly growing field that has the potential to revolutionize drug delivery and improve patient outcomes. However, there are still challenges to be addressed, including safety concerns and regulatory issues.

4. Agriculture Biotechnology

Agricultural biotechnology include the use of biostimulants and biofertilizers to enhance crop growth and productivity, the development of disease-resistant animals, and the use of genomics to improve animal breeding and health.

While agricultural biotechnology has the potential to provide many benefits, it is also a controversial field, with concerns about the safety and environmental impact of GM crops. Regulatory oversight is necessary to ensure the safety of these technologies and their impact on the environment.

5. Advances in Biotech Manufacturing

Recent years have seen significant advancements in biotech manufacturing, including the development of new technologies that have improved the efficiency, scalability, and cost-effectiveness of biologic drug production. Continuous manufacturing, single-use systems, and new expression systems, such as cell-free systems and synthetic biology, have all contributed to the production of complex biologics that were previously difficult to manufacture. Additionally, advancements in process analytics and control have improved the quality and consistency of biologic drug production, making it more reliable and reproducible. These advancements have transformed biotech manufacturing, making it more efficient, cost-effective, and capable of producing the next generation of life-saving biologic drugs.

6. Evolution of drugs and Drug Labs

Drug evolution is a unique idea that is put out to create chemical libraries with a high likelihood of discovering medications or drug candidates. Chemical evolution replaces biological evolution as a result. In this study, we present "hybridization" drug evolution, which in biological evolution is comparable to sexual recombination of parental genomes. No drug development can take place without the hybridization, which essentially shuffles the components of the parent medicines and ought to drug(s). We created 16 compounds by combining the two parent medications, benzocaine and metoclopramide, with four other known pharmaceuticals and two more molecules with recognised therapeutic properties. The exceptionally large number of medications and drug prospects in the library raises hopes that the final eight chemicals will provide new pharmaceuticals or drug candidates.

7. Drug Regulations & Quality Assurance

The technique of testing, developing and advertising of drug treatments has to regulated to defend the hobbies of the public. Major regulatory our bodies consist of the Food & Drug Administration (FDA) in the US and the European Medicines Agency (EMA) in Europe. The purpose of pharmaceutical first-rate warranty is to make certain that the medication being synthetic will offer the desired impact to the affected person. Quality guarantee also guarantees that there are not any contaminants gifts and that the medications will meet satisfactory requirements and all applicable policies.

8. Clinical Trials and Clinical Research

Clinical trials are a sort of research that research new tests and treatments and evaluates their effects on human health effects. People volunteer to take part in scientific trials to test scientific interventions consisting of pills, cells and other organic merchandise, surgical strategies, radiological methods, gadgets, behavioural treatments and preventive care. Clinical trials are carefully designed, reviewed and finished, and want to be permitted before they are able to begin. People of all ages can participate in clinical trials, such as children. While preclinical research answers primary questions on a drug’s protection, it isn't always an alternative choice to research of approaches the drug will interact with the human body. “Clinical research” refers to studies, or trials, which can be accomplished in people. As the builders design the medical study, they'll don't forget what they want to perform for every of the unique Clinical Research Phases and begin the Investigational New Drug Process (IND), a procedure they must undergo earlier than clinical research starts.

9. Cosmetic Biotechnology

Biotechnology has had an effect on cosmetics in numerous methods. Cosmetics groups use biotechnology to find out, increase, and bring components of cosmetic formulations and to assess the pastime of those components at the skin, specially, how they could have an effect on the modifications associated with ageing. Biotechnology makes use of microorganisms and/or enzymes to gain particular products through fermentative approaches and/or genetic engineering strategies. Examples of these products are energetic elements, which include hyaluronic acid, kojic acid, resveratrol, and some enzymes, which are utilized in skin anti-ageing merchandise. In addition, certain growth elements, algae, stem cells, and peptides had been protected in cosmetics and aesthetic medicines. Thus, biotechnology, cosmetics and aesthetic medicines are now closely related, via the production of first-rate energetic ingredients, which can be more powerful and more secure.

10. Biotechnology for Nutrition and Food Sciences

Biotechnology encompasses the simple and applied sciences of living structures and their engineering factors required to make the most their bioprocesses to carry products to the marketplace vicinity. While knowledge of bioprocess era has rapidly advanced in latest years, man has been working towards biotechnology considering that prehistoric instances. Today biotechnology has moved beyond neighborhood manufacturing of alcohol or fermented meals to the production of bio-substances and delicate merchandise and it has a fantastic potential for similarly increasing meals production, improving meals raw substances and producing components so that it will enhance human health. It have to be understood that biotechnology is a set of techniques a number of which may involve genetic engineering for the production of genetically changed meals (GMO).

11. Food Biotechnology

Food technology is a subfield of food science that deals with the invention, production, preservation, and quality control of food items. Early studies in food technology were primarily concerned with food preservation. The invention of the canning method by Nicolas Appert in 1810 was a pivotal moment. However, canning has had a significant influence on food preservation methods even if the process wasn't known as canning at the time and Appert didn't fully understand the underlying principle of his method. The first attempt to apply scientific knowledge to food handling was made by Louis Pasteur in 1864 with his study on the deterioration of wine and his explanation of how to prevent deterioration. Pasteur conducted study on the creation of alcohol, vinegar, wines, and beer as well as the souring of milk in addition to his studies on wine spoilage.

12.Genetic Engineering

Genetic engineering is the manipulation of an organism's DNA to create new traits or characteristics. This process involves the use of biotechnology tools like CRISPR-Cas9 to alter the genetic material of an organism, allowing for the creation of new organisms with specific desirable traits or for the modification of existing organisms to better suit their environment or serve a specific purpose. Genetic engineering has many applications, including in medicine, agriculture, and biotechnology. However, there are also ethical and environmental concerns associated with the use of genetic engineering, which require careful consideration and regulation.

13. Industrial and Environmental Biotechnology

Environmental biotechnology, on the other hand, is the application of biotechnology to solve environmental problems, such as pollution, waste management, and resource conservation. This involves the use of microorganisms to remove or degrade pollutants from the environment, as well as the development of bioremediation technologies to clean up contaminated sites. Environmental biotechnology also includes the use of biotechnology to develop sustainable agricultural practices and to conserve biodiversity.

Both industrial and environmental biotechnology have the potential to contribute to sustainable development by reducing our dependence on fossil fuels, minimizing waste, and protecting the environment. However, there are also ethical and regulatory issues associated with the use of biotechnology, which need to be carefully considered and managed.

14. Biotechnology in Dentistry

Advances in biotechnology have supplied surgeons an alternative to help accelerate alveolar bone regeneration and beautify gentle tissue boom the use of concentrated blood serum. By utiltizing a small extent of Platlet Rich Plasma (i-PRF) obtained from the sufferers personal blood medical doctors can now add it to extraction web sites and bone graft material to yield a 3 dimensional biocompatible fibrin matrix that releases a host of clearly occuring boom factors which contrinute to rapid restoration and bone regeneration. Among these elements are PDGF, TGF-b, IGF-I, and VEGF. Platelet Derived Growth Factor, Insulin associated Growth Factor-I, Transforming Growth Factor-b, and Vascular Endothelial growth Factor are the primary factors concerned. Once the plasma fraction is activated they play a essential position in revascularization and bone tissue regeneration. They paintings to induce mitogenic and proliferative interest of osteoprogenitor cells and endothelial cells as a result enhancing healing time and accelerating implant osseointegration. Together they paintings to growth bone remineralization, produce collagen, and promote blood vessel boom.

15. Genetics and Molecular Biotechnology

Molecular Biology and Genetics are searching for to recognize how the molecules that make up cells decide the conduct of living matters. Biologists use molecular and genetic tools to examine the feature of these molecules in the complex milieu of the living cellular. Groups in our branch are the use of these procedures to examine a huge style of questions, including the essential processes of transcription and translation, mechanisms of world gene manipulate which include signal transduction pathways, the function of the visual and olfactory systems, and the character of genetic range in herbal populations and how that impacts their evolution, amongst others. The structures under have a look at cowl the variety of model organisms (bacteria, yeast, slime molds, worms, fruit flies, zebrafish, and mice) though the outcomes of those research relate without delay or in a roundabout way to human health.

Market Analysis

A comprehensive market research analysis that includes forecasts and market estimates, as well as technology analysis and developments at cutting-edge companies in the Biotech, Pharmaceutical, and Genetics industries. Gain critical insights that can help shape business development, product development, and investment strategies. All businesses, research institutions, and organisations that improve the quality of life for all organisms are considered in this area. When it comes to human health, understanding diseases is essential so that mankind can benefit from studies and research and fight against these health pandemics.

                                         

Biotechnology is the application of biological processes and living organisms to modify various products and services. In agriculture, biotechnology is used to increase genetically modified plants, improve pest resistance, increase crop herbicide tolerance, and promote sustainable farming. It is also gaining traction in wastewater treatment, chemical manufacturing, paper, textiles, and food products, as well as reducing environmental footprints and making industrial processes cleaner and more efficient.

 

Forecast market size for biotechnology-based chemicals by region and country from 2023 to 2027. It also examines production volume on the global market and by type from 2017 to 2027. It discusses production volume by region from 2017 to 2027. The report includes pricing analysis for each type from 2017 to 2027, manufacturer from 2017 to 2023, region from 2017 to 2023, and global price from 2017 to 2027.

To Collaborate Scientific Professionals around the World

Conference Date July 26-27, 2023

For Sponsors & Exhibitors

sponsor@conferenceseries.com

Speaker Opportunity

Past Conference Report

Supported By

Archives of Industrial Biotechnology Journal of Biomedical Sciences Journal of Microbial & Biochemical Technology

All accepted abstracts will be published in respective Conference Series International Journals.

Abstracts will be provided with Digital Object Identifier by